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NOTE

An Efficient and Robust Spectral Solver for Nonseparable
Elliptic Equations

1. INTRODUCTION used for an efficient spectral solution, such as conjugate
gradient or multigrid [3].

The objective of this note is to demonstrate the computa- Equation (1) arises during the numerical simulation of
tional efficiency and robustness of a preconditioned bicon- flows in certain domains such as within an undulating chan-
jugate gradient spectral solution of a nonseparable elliptic nel, when an orthogonal conformal-like mapping [4] of the
equation. We accomplish this by evaluating the perfor- original domain (x9, y9) to a rectangular domain (x, y) is
mance of the proposed scheme based on the BiCGstab(l) utilized, where M 5 h2

x/h2
y is the constant ratio of the two

algorithm [1], with a spectral preconditioner based on an shape factors of the mapping and g(x, y) 5 h2
x . Equation

iterative scheme proposed by Concus and Golub [2] and (1) is also a rescaled form of a generalized Helmholtz
a fast direct spectral solver for Helmholtz equations with equation [2]:
constant coefficients [3], for different functional coeffi-
cients and different test solutions, among the most compli- =2v 2 s(x, y)v 5 r(x, y). (4)
cated ones which have appeared in the literature. For com-
parison purposes, the results obtained with two other Generalized Helmholtz equations arise frequently in fields
schemes are also reported here. such as optics [5], geophysics [6], and plasma physics [7].

The nonseparable elliptic equation that is considered in In addition, nonseparable elliptic equations of the form
this work is a modified Helmholtz equation with a noncon-
stant coefficient g(x, y), = ? (a(x, y)=u) 2 b(x, y)u 5 c(x, y), (5)

can also be transformed to the form of a generalized Helm-­2P
­x2 1 M

­2P
­y2 2 g(x, y)P 5 f(x, y), (1) holtz equation (4) through a change of variable v 5 a1/2u,

when a(x, y) is positive in the domain of definition [2].
Most of the early work on the efficient solution of non-

where f(x, y) is an arbitrary function, M is a constant and separable elliptic equations involved finite difference ap-
x, y [ [21, 1]. Although the method discussed in this proximations (especially second order). Initially general
work can be applied with any boundary conditions, for iterative approaches like SOR, Richardon iteration, and
illustrative purposes we focus our attention to periodic ADI [8] were used. For a properly selected relaxation
boundary conditions along the x-direction and Dirichlet, parameter value, the ADI method is proven to converge
Neumann along the y 5 21, y 5 1 boundaries, respectively: in a number of iterations which is constant with the mesh

size [9–11]. However, this number is small (often as low
P(21, y) 5 P(1, y), as 3 or 4) only for g(x, y) constant. For an arbitrary

g(x, y) the number of iterations required to achieve a
certain error can increase to unacceptably high values.­P

­xU(21,y)
5

­P
­xU(1,y)

, (2)
More recently, iterative techniques have been proposed
that involve preaveraging of the function g(x, y) in one [2]
or two [12] directions, where fast solvers can be used, basedP(x, 21) 5 0,

­P
­yU(x,1)

5 0. (3)
on cyclic reduction and FFT methods, respectively. The
performance of these methods is better than the ADI, but
still a large number of iterations can be required.Correspondingly, a Fourier and Chebyshev expansion is

utilized along the x and y directions, respectively. Since, for The number of iterations can decrease substantially if
any one of the above-mentioned iterative techniques area general function g(x, y), a fast direct Helmholtz spectral

solver is not available, an iterative method needs to be used as preconditioners in conjunction with a conjugate
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gradient method [13]. In particular, Elman and Schultz used. Specifically, the first set of M and g(x, y) corresponds
to the Helmholtz equation following the orthogonal map-[14] applied a conjugate gradient scheme which utilizes as

a preconditioner an approximate, but separable, problem ping of an undulating channel to a unit square. The second
set was selected based on the analysis in [2], such that thewhich can be solved directly. They saw a significant

reduction in the number of iterations, especially when Concus and Golub scheme exhibits a slow rate of conver-
gence.they used partial averaging (along one direction only) of

the variable coefficients in the elliptic equation under in-
vestigation. 2. METHODOLOGY

However, finite difference solutions converge slowly
2.1. Concus and Golub Methodwith mesh refinement, the error decreasing as a low-order

power of the number of mesh points used. In contrast, Concus and Golub [2] have proposed an iterative scheme
spectral methods converge exponentially fast, the error which uses fast direct solvers for the repeated solution of
decreasing exponentially with the number of modes in- a Helmholtz problem with constant coefficients:
volved. This drives the interest to utilize spectral methods
in conjunction with an efficient solver. As with finite differ-
ences, iterative techniques such as that proposed by Concus S ­2

­x2 1 M
­2

­y2 2 KD Pn11

(6)and Golub [2] can be formulated. More recently Zhao and
Yedlin [6] have solved pseudospectrally the equation 5 (g(x, y) 2 K)Pn 1 f(x, y),
= ? (a=u) 5 f, by rewriting it as =2u 5 ( f 2 =a ? =u)/a and
iterating. However, they have only presented results for subject to the same boundary conditions (2) and (3). In
a(x, y) which exhibits only mild x, y dependence. Eq. (6) K is a free parameter, which usually has the so-

As with finite differences, conjugate gradient methods called min–max value,
appear to be the most efficient and they have been pro-
posed to be used with spectral methods involving either

As(min(g(x, y)) 1 max(g(x, y))), (7)finite difference [3], or finite element preconditioners [15],
but with mixed results. Spectral preconditioners seem to

but which can be optimized for higher rates of convergence.be more appropriate. Guillard and Desideri [16] proposed
In the past it has been demonstrated using finite differencestwo spectral preconditioners, which correspond to separa-
[2] that the number of necessary iterations can vary dramat-ble operators, along with a minimal residual (MR) scheme
ically, depending on the function g(x, y) which has a criticalthat has been used with finite difference preconditioning
role on the rate of convergence of (6). The smootherin the past [3]. However, for the first type of preconditioner,
g(x, y) is, the faster the rate of convergence. However, itthe number of iterations can increase significantly with
has not yet been utilized in conjunction with a spectral so-increasing g(x, y) variability and mesh size, whereas for
lution.the second preconditioner, for which the number of itera-

The efficiency of Concus and Golub’s method can betions is always small (less then 10), the computation of the
increased by extending its formulation to accommodate theeigenvectors of the elliptic operators is required, making
use of a parameter K which is a one-dimensional functionthat scheme much more demanding in computational
instead of a constant [12]. Unfortunately, for a spectralpower. More recently, Strain [17] has used a separable
solution, that would have required a prohibitively largeoperator as a preconditioner to a generalized minimum
computational time since there is no fast Helmholtz solverresidual scheme (GMRES) to solve a fully periodic prob-
available for variable coefficients. Thus, the best way tolem spectrally. However, from the results presented, it was
improve the spectral solution’s efficiency is to use a conju-clear that the method needed a large number of iterations
gate gradient scheme such as BiCGstab(l), with this itera-to converge (sometimes more than 100). Thus, the effi-
tive procedure as a preconditioner, as explained at the endciency and robustness of such a method has not yet been
of Section 2.2 below.convincingly demonstrated.

In this work, we have investigated the performance of
2.2. BiCGstab(l) Method

the numerical solution of (1) subject to the boundary condi-
tions (2) and (3) by several algorithms: First, using the Conjugate gradient methods are probably the most pop-

ular iterative techniques for solving systems of linear equa-iterative method due to Concus and Golub [2] and a
spectral fast Helmholtz solver; second, applying the tions. They are often referred to as subspace iteration

methods, since they solve a system of linear equationsBiCGstab(l) method using as preconditioners either an
ADI scheme based on fourth-order finite differences, or A ? x 5 b by minimizing quadratic functionals in Krylov

subspaces, which are spanned by a series of vectors gener-the iterative spectral method discussed above. Two sets of
M and g(x, y) and several right-hand sides f(x, y) were ated by repeated multiplication by A. From the plethora
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of such methods that have been developed, of interest is parameter l of the BiCGstab(l) algorithm. The FFTs
the recently proposed by Sleijpen and Fokkema [1] require an O(N log2 N) number of operations and both
BiCGstab(l), which is a generalization of an earlier algo- the finite difference ADI and the fast spectral Helmholtz
rithm (BiCGstab) by Van der Vorst [18]. This algorithm solver an O(N), where N is the number of unknowns.
overcomes some shortcomings of BiCGstab, by combining Both terms also exist for the Concus and Golub and
the BiCG algorithm with the GMRES(l) algorithm [1]. the BiCGstab(l) algorithms so that the overall CPU
The parameter l is the degree of the minimum residual time in any case can be considered approximately as
polynomial used in the algorithm. Increasing the value of nl((ak 1 b)N log2 N 1 (ck 1 d)N), where k is the
l can make the algorithm more accurate, but at the expense number of iterations within the preconditioner and a,
of computational cost, due to the 2l matrix–vector multipli- b, c, d small integer numbers O(10), depending on the
cations required. As with the original BiCGstab algorithm, number of FFT calls and vector operations needed per
products involving AT ? x are not required. The only ma- preconditioner step and within the BiCGstab(l) algo-
trix–vector products A ? x appearing in this algorithm are rithm. Thus, it is evident that the algorithms have almost
evaluated efficiently in O(N log2 N) operations directly linear scalability with the number of unknowns, with
from the spectral residuals through fast Fourier transforms. the proportionality factor roughly proportional to nlk,
However, as with all conjugate gradient methods, a precon- provided the parameters a, b, c, d are independent on
ditioner needs to be used for rapid convergence [3]. Finite the mesh size and b # a, d # c, as it was found in all
difference and spectral preconditioners were considered examples examined here.
in this work.

The first preconditioner considered, is a fourth order
3. RESULTS AND DISCUSSIONfinite difference solution of (1) obtained by the ADI

method [9–11]. The finite difference discretization is obvi- The results presented here correspond to two different
ously defined on the same type of grid as the spectral sets for the function g(x, y) and the parameter M in (1).
method. The ADI method is based on the principle of In the first set, g(x, y) 5 g1(x, y) ; h2

x which is relatively
operator splitting, where the problem is discretized in each smoothly varying, where hx is the shape factor resulting
direction separately and a series of one-dimensional prob- from the orthogonal mapping of an undulating channel
lems are solved in alternating order. A relaxation parame- defined as x9 [ [21, 1] and y9 [ [21, 1 2 0.5 cos x9] to
ter is also used in the form of an effective time Dt, unew 5 the square x [ [21, 1] and y [ [21, 1]. The range of values
uold 1 Dt(residual equation), which serves to stabilize and of g1(x, y) is from 0.016 to 8.5 approximately with M 5
accelerate the convergence of the numerical scheme. This M1 P 6.7. In the second set,
parameter is important and it needs to be optimized, to-
gether with the number of iterations within the ADI
scheme (which does not need to converge fully in the g2(x, y) ; 28f sin(2f(x 1 y))

Ds 1 sin(2f(x 1 y))
, (8)

preconditioning step). The optimum for each specific prob-
lem is found by trial and error, taking into account the fact
that the number of iterations in the biconjugate gradient with M2 5 1, and was patterned from a function in Concus
algorithm should remain relatively low so that the gener- and Golub [2], corresponding to a case for which their
ated vectors do not start losing their orthogonality due to algorithm exhibited very slow convergence.
truncation error. Equation (1) was solved for various right-hand sides

The applicability of the Concus and Golub iterative pro- f i(x, y) which correspond to the following solutions
cedure as a spectral preconditioner is also considered here. Pi(x, y), i 5 1 2 4, with respect to which the maximum
As in the ADI finite difference case, it was found that the absolute error of the numerical solution was calculated
internal iterations corresponding to the Concus and Golub and reported:
preconditioner also do not need to converge in order to
reach optimum performance (minimum CPU time). In- P1(x, y) ; (y2 2 1)(y 2 1) sin(fx),
deed, no more than two iterations within the precondi-

P2(x, y) ; (y2 2 1)(y 2 1) (e y sin(fx)tioner were found necessary in the test cases presented
here, which also implies that K need not always have the 1 e2y cos(fx)),
optimum value for faster convergence.

P3(x, y) ; (y2 2 1)(y 2 1) (e y sin(2fx) (9)

2.3. CPU Requirements
1 e2y cos(2fx)),

P4(x, y) ; (y2 2 1)(y 2 1) (e5y sin(4fx)
The CPU requirements are proportional to the number

n of conjugate gradient iterations and the characteristic 1 e25y cos(4fx)).
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FIG. 1. Effect of the parameter K in Concus and Golub’s method, FIG. 2. Rate of convergence of Concus and Golub’s method for
for g1(x, y), f4(x, y), and 32 3 33 mesh. (The error is calculated with g2(x, y), K 5 min 2 max value and various right-hand sides for a 32 3
respect to the exact solution.) 33 mesh.

The spectrally preconditioned BiCGstab(l) algorithm’s of Fig. 2. The applicability of such an algorithm is there-
performance was also tested for right-hand sides corre- fore limited.
sponding to the solution, The BiCGstab(l) method with ADI finite difference pre-

conditioning exhibits greater applicability since it con-
verges in every case. It has however, three shortcomings.P5(x, y) ; (y2 2 1)(y 2 1)

y2 cos(4fx) 1 1.1a
, (10)

As it can be seen in Fig. 3, for large mesh sizes N it requires
a substantial amount of time to converge. It also shows a

where a is a parameter. The difficulty of the spectral ap- dependence on g(x, y) and is slower for strongly varying
proximation of this solution increases sharply as a ap- functions. This can also be seen from Fig. 4. However, the
proaches 1/1.1, at which value P5(x, y) becomes singular. method is stable since, as Fig. 4 shows, the iterations can

The convergence criterion used was that the maximum be carried on even after the error has reached the levels
absolute difference within the computational mesh of two of truncation error, without the scheme diverging. How-
successive iterates becomes smaller than 10210. This Ly ever, for this method the truncation error was usually of
criterion is effective at high convergence rates, as those the order of 10210, substantially higher than the machine
encountered in the preconditioned BiCGstab(l) method. accuracy for double precision calculations.
All runs were performed on a IBM RS6000/39H worksta- The BiCGstab(l) method with spectral preconditioning
tion, which has a typical performance of 130Mflops in linear had the best performance, as it is evident from Figs. 5 and
algebra calculations. The mesh resolutions considered 6. The time needed for the method to converge is much
ranged from 8 3 9 to 512 3 513, but the main range of less than when finite difference ADI preconditioning is
interest was from 32 3 33 to 128 3 129. used, and the dependence of the rate of convergence on

First, it needs to be mentioned that the number of conju- g(x, y) is also less. Additionally, its rate of convergence is
gate gradient iterations required was observed to be essen-
tially constant with varying mesh size to within 1–2 itera-
tions. Thus, the interest is focused on how that number
changes as the method or the problem difficulty varies.

Figures 1 and 2 correspond to Concus and Golub’s itera-
tive scheme using a fast direct spectral solver [3]. It is
evident from the first figure, that for this method the pa-
rameter K determines its efficiency. From Fig. 1, one can
see that the suggested min–max value K 5 3.64 results for
the same error in twice as many iterations for convergence
as the optimum value K 5 1.5. Additionally, from Fig. 2
one can see that for g(x, y) 5 g2(x, y) this method does
not converge for all right-hand sides and, for those for
which it converges, a very large number of iterations are
required. This behavior does not depend on the resolution FIG. 3. Performance of BiCGstab(l) with ADI preconditioning with

respect to the mesh size.and, therefore, any mesh increase does not alter the form
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FIG. 4. Rate of convergence of BiCGstab(l) with ADI precondi- FIG. 6. Rate of convergence of BiCGstab(l) with spectral precondi-
tioning for a 32 3 33 mesh. tioning for a 32 3 33 mesh.

much greater and the truncation error is of the order of higher error values. It must be noted that this method was
machine precision. As with the other methods, there is no also tested successfully for the functions g(x, y) used in
dependence of the number of iterations on the mesh size [16], for which a large amount of iterations were needed
and that number is much less than that for the ADI precon- for convergence.
ditioner (compare Figs. 4 and 6). Moreover, it is exception- With all the functions used, the spectrally precondi-
ally stable, as it can converge for a machine zero value of tioned BiCGstab(l) requires at most nine iterations for
iteration updates without any problems, without even the convergence. The time per iteration varies with the charac-
few fluctuations observed in Fig. 4 for the ADI precondi- teristic parameter l and the number of internal iterations
tioner. As Fig. 7 shows, with this solution method we can in the preconditioner k, but remains roughly 3–18 times
clearly observe the exponential convergence of the approx- that required for a fast Helmholtz solver solution equiva-
imation (until truncation error levels are reached). lent to one step in the Concus and Golub scheme.

The performance of BiCGstab(l) with spectral precondi-
tioning was further tested for functions which are very 4. CONCLUSIONS
difficult to approximate spectrally, such as P5(x, y) for

Three different spectral iterative solvers based on spec-different values of the parameter a. Figure 8 shows that
tral approximations for generalized Helmholtz equationsthe time needed to converge with respect to the mesh size
have been presented. The comparison between them hasis of the same order as in Fig. 5. Finally, Fig. 9 shows the
shown that the BiCGstab(l) algorithm with spectral pre-exponential rate of convergence of the method. For a 5
conditioning is undisputably the best method examined2 and a 5 1, larger meshes (256 3 257 and 512 3 513,
here, in terms of accuracy, efficiency and stability. It canrespectively) were required to reach machine accuracy (not
be classified as a mixed spectral method, since it uses ashown in Fig. 9), but the rate with which the error decreases
Chebyshev-tau approximation for the linear terms and thewith mesh refinement remains exponential, even at these

FIG. 5. Performance of BiCGstab(l) with spectral preconditioning FIG. 7. Exponential convergence of BiCGstab(l) with spectral pre-
with respect to the mesh size. conditioning with increasing resolution.
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